CHBHPCKHH JIECHOH JKYPHAJL 2019. Ne 5. C. 43-53

UDC 630*111: 630*113: 574.42

Pinus sibirica Du Tour RESPONSE TO CLIMATE CHANGE
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Climate change has a direct impact on the forest ecosystems of the boreal zone. Temperature increase has a stimulating
effect on the advancement of a tree line along the elevation gradient, increase of tree radial increment and stand density.
The object of the study was the stands formed by the Siberian pine growing in the forest-tundra ecotone of Kuznetsk
Alatau Mountains. The rate of timberline and tree line advancement were estimated using GIS-technology and field
research. It has been established, that the beginning of the Siberian pine advancement along the elevation gradient
coincides with the period of air temperature increase. Estimated speed of tree line advancement is approximately
0.2-0.3 m/year; timberline ~ 0.5 m/year. The average radial increment after 1980 was 25 % higher than the radial
increment over the same period of the previous years. At the same time after a marked increase of the radial increment
in the early 1980s, a negative trend is observed up to the local minimum of 1999 (+* = 0.52). Dendroclimatic analysis
indicates a negative influence of July—September temperatures (» =—0.63) and that of winter precipitation (» =-0.81)
on radial increment, while the amount of July—September precipitation (» = 0.54) and root zone wetness content
during the vegetation period (» = 0.73) show positive correlation with radial increment. During the previous period
from 1967 t01982, a negative effect of winter precipitation on radial increment was also noted (» = —0.69), whereas
May—June temperatures demonstrated a positive effect on radial increment (» = 0.66).
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INTRODUCTION and timberline can be assessed both by dendrochro-

nological and GIS methods. Dendrochronological

Climate change taking place at the turn of the
XXI century affects forest ecosystems over the
entire circum-boreal zone causing changes in the
ecosystems and redistribution of woody species
(Aitken et al., 2008). The advancement of treeline

techniques make it possible to estimate climate in-
fluence on local changes of treeline and timberline.
However, GIS methods can allow us to approxi-
mate these changes on wide scale territory. When
applying the combination of dendrochronological
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and GIS methods, elevational shifts of forest veg-
etation have been observed in the mountains of the
Altai-Sayan region (Kharuk et al., 2017¢), the Urals
(Moiseev et al., 2004; Shiyatov et al., 2007; Devi
et al., 2018) and the Alps (Walther et al., 2002), in
Sweden (Kullman, 1997, 2002, 2007, 2014; Kull-
man, Oberg, 2009), USA (Jakubos, 1993; Taylor,
1995; Weisberg, Baker, 1995; Woodward et al.,
1995; Lloyd, Graumlich, 1997; Klasner, Fagre,
2002; Munroe, 2003) and Canada (Kearney, 1982;
Lavoie, Paeytte, 1992; Masek, 2001).

At the same time, the increase in air temperature
might increase aridity, which can lead to the change
of radial increment limiting factors (D’ Arrigo et al.,
2008; Hellmann et al., 2016). In the southeastern
part of the Putoran Plateau increased sensitivity of
larch radial increment to moisture parameters after
1990 was recorded (Kharuk et al., 2019). Increased
aridity has been recorded as a limiting factor for
northeastern (Liu et al., 2006; Yang et al., 2013;
Liang et al., 2016) and northern Himalayan slopes
(Liang et al., 2014) since the 1950s. Water stress
brought about the Siberian pine decline after 1985
in the mountains of Baikal region (Khamar-Daban
ridge) (Kharuk et al., 2017a).

In this study we aimed to analyze the Siberian
pine response to climate changes in the Kuznetsk
Alatau forest-tundra ecotone. In order to achieve the
aim, we planned to answer the following questions:

1. How radial increment rate of the Siberian
pine has changed since 1950;

2. How treeline elevation level in the Kuznetsk
Alatau Mountains alters under climate change;

3. What major limiting factors for radial incre-
ment of the Siberian pine are; if any change in limi-
ting factors for the Siberian stone pine radial incre-
ment has occurred.

MATERIALS AND METHODS

Field studies. The field studies have been car-
ried out on the eastern macro slope of the Kuznetsk
Alatau (Fig. 1).

The objects of the study were the Siberian pine
trees growing in the mountain forest-tundra eco-
tone. Sampling was carried out along two eleva-
tional transects (1410-1445 and 1370-1390 m
above sea level) on the southwestern and southern
slopes.

The beginning of the transect corresponds to the
boundary of closed stands (closeness > 0.3), where-
as the end of the transect correlates with the upper
elevation level of regeneration. Temporary 3 x 3 m
test plots (TP) were established along the elevation
gradient with an interval of 10 meters in elevation
along the transect. Within TP regeneration quantity,
height, viability and age were determined by the
number of annual rings at the level of root collar.
In addition, exogenous effects (for example, fires or
cuttings) were described. Model trees grew on local
southern or southwestern slopes with a steepness
from 9° to 18° on well-drained brown-mountain
soils (Buko, 1999). Samples were taken within the
transect using a 5-mm diameter increment borer. For
a more accurate tree age determination the samples
were taken as close to the root collar as possible.

540 ,;:: '

if\

Fig. 1. Geographical location of the studied area (/ — test plot, 2 —
rivers and lakes, 3 — dark needle conifer stands).
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For each tree the coordinates and elevation above
sea level were recorded and morphometric charac-
teristics (tree height, diameter at breast height) were
described.

Dynamics of ecological-climatic variables. The
average annual temperature in the Kuznetsk Alatau
Mountains is —2.1 °C. The coldest month is January
(~15.3 °C), the warmest one is July (13.4 °C). Dur-
ing the year, the average total amount of precipita-
tion is 1600 mm (in summer 380 mm, in winter —
330 mm).

The early 1970s was characterized by a decrease
of air temperature during the growing season, par-
ticularly in May—June (Fig. 2, a).

Major climatic changes occurred in the period
from the early 1980s to the early 2000s. During this
time, warm period (May—September) temperature
(Fig. 2, a) and amount of cold period (November—
Mach) precipitation has increased (Fig. 2, b). The
temperature in the cold period increased on the av-
erage by 1.7 °C (Fig. 2, a).

At the same time, there was a decrease in root
zone wetness (Fig. 2, ¢). In 1998-1999, a strong soil
drought (Fig. 2, c¢) was observed. In the beginning

of the 2000s, the temperature of the growing season
decreased, while the frequency and strength of soil
droughts increased (Fig. 2, a, ¢).

GIS analysis. Remote sensing data included
images of medium (Landsat, 60 and 30 m; http://
glovis.usgs.gov) and ultra-high (WorldView, Geo-
Eye; 0.41-0.46 m; www.google.com/maps; www.
bing.com/maps) spatial resolution and digital el-
evation model SRTMGL 1 (30 m spatial resolution,
https://Ipdaac.usgs.gov).

The satellite images of Landsat analyzed in this
work cover the time span from 08/20/1976 (Land-
sat 2) to 06/29/2015 (Landsat 8). To analyze the
dynamics of the closed forest area in the Kuznetsk
Alatau Mountains a site with total area of ~ 65
thousand hectares was chosen (coordinates of the
scene angles are top left: 88°47°0"" E, 54°11°30"" N;
bottom right: 89°15°0"" E, 54°0°0"" N). Initially the
images were pretreated, corrected in terms of topog-
raphy normalized (Riano et al., 2003) and processed
in the Erdas Imagine software package (http://www.
hexagongeospatial.com). For each image, a mask of
closed forest (closeness > 0.3) was formed by maxi-
mum likelihood method using the threshold func-
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tion. Test samples were created by the method of
increasing area according to the topographic maps
of the 1980s (scale 1 : 100.000), field data (2014
and 2016) and ultra-high spatial resolution images
(2013) from open sources. For each year, two clas-
ses were created: closed forest and background
areas. Then, the distribution of closed forest class
via the elevation above sea level was obtained in
the ArcGIS software package (2019) for the maps
of 1976 and 2015. Estimation of the advance of the
upper limit of closed stands was carried out by com-
paring the calculated median values of elevation
above sea level (Fig. 4, a) for the class of closed
stands.

Statistical analysis of the data was carried out
with the following software packages — Microsoft
Excel (2019) and StatSoft Statistica (2019).

Dendrochronology analysis. For dendrochro-
nological analysis, cores were selected from 50 mo-
del the Siberian pine trees using an increment borer.
Each core was glued to a wooden backing, sanded
and treated with contrasting powder. The measure-
ments were carried out on the LINTAB-3 platform
with the accuracy of 0.01 mm. The quality of cross
dating was evaluated using COFECHA program
(Holmes, 1983). The absolute chronologies were
indexed and detrended in the ARSTAN program
(Cook, Holmes, 1986) by means of the negative
exponent method or linear regression with a nega-
tive slope (Rinn, 1996; Speer, 2010).

In dendroclimatic analysis the ecological and
climatic parameters were used: temperature, total
precipitation and root zone wetness (RZW). Pear-
son’s correlation coefficients (including running
11-yr correlation) were used in dendroclimatic
analysis. Multiple regression analysis was used for
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studying the relationship of growth index (GI) and
climatic variables (temperature and precipitation).

The series of average monthly temperatures and
precipitation values were obtained from the nearest
to TPs weather station «Nenastnaya» (WMO index
29 752; ~65 kmto TP, 1186 m a. s. 1.).

Root zone wetness (average/estimated amount
of water at a depth of 1 m taken equal to 0—100 cm)
was obtained from the MERRA-2 database (2016)
(spatial resolution 0.5°% 0.625°).

RESULTS AND DISCUSSION

Estimation of tree line advancement rate. The
advancement of trees along the elevation gradient
is observed for both the tree line and timberline.
According to the tree ages, it has been established
that since the 1960s the Siberian pine trees have ap-
peared at elevations, which were not previously oc-
cupied by woody plants (Fig. 3).

On the average, the distribution limit has ad-
vanced 15-30 meters in comparison to the first
half of the twentieth century, which makes it pos-
sible to estimate the rate of advancement as 0.2—
0.3 m/year.

At the same time, the timberline is moving fast-
er (0.5 m/year). According to remote sensing data,
the area of closed stands from 1976 to 2015 has
increased from 26.4 thousand hectares up to 28.7
thousand hectares (Fig. 4, a); thus the overall in-
crease of closed stands in the area under study was
~ 8.3 % (2.3 thousand hectares).

Median values change corresponds with the dy-
namics of overall advancement of closed stands and
was approximately (19 £ 0.3) m in elevation from
1976 to 2015.
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Fig. 3. Age of the Siberian pine trees vs elevation on southwestern (a) and southern (b) slopes.
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Fig. 4. Advancement dynamics of closed tree stands along the elevation gradient (¢ — absolute

values, b — relative values).

Fig. 4, b shows a relative change in the area of
closed tree stands along the elevation gradient with
a step of 50 m. A reliably distinguishable increase
of the closed tree stands area is observed at eleva-
tion of more than 1000 meters a. s. 1. The highest
increase of the closed tree stands area is observed in
the mountain forest-tundra ecotone.

The process of tree line advancement is char-
acterized by several stages. At the first stage, in-
dividual trees occupy the most favorable places in
microtopography, creating protection from snow
abrasion and desiccation (Batllori et al., 2009;
Benavides et al., 2016; Vitali et al., 2019). Subse-
quently these trees become nurse plants for new
seedlings, contributing to the advance of new trees
into the mountain forest-tundra zone. Thus, the so-
called «hedges» are gradually formed (Holtmeier,
2009) — structures consisting of several individual
trees and oriented in the direction of prevailing
winds (Holtmeier, Broll, 2010). As growing con-
ditions are transformed and mitigated, the areas
between the «hedges» overgrow, «hedges» also
grow and the crowns gradually merge leading to
the advancement of timberline. It is worth noting
that, having equal mitigation of growing conditions,
the emergence of woody plants in a previously
unoccupied area is slower than timberline advance-
ment (e. g., Camarero, Gutiérrez, 2004), which is
mainly due to the seed propagation rate. In the case
of the Siberian pine, which is a zoohore species,
the rate of propagation depends on the activity of
a distributor — the Siberian nutcracker Nucifraga
caryocatactes L. (Kajimoto et al., 1998; Tomiolo,
Ward, 2018). Warming observed since 1950s (an
increase in average annual temperature) has stimu-
lated tree line and timberline advancement. In Al-
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tai region, during recent warming (since the 1980s)
the increase and advancement of Siberian pine re-
generation were observed (Timoshok et al., 2009,
2014, 2016; Kharuk et al., 2017¢). Similar advan-
ces of woody plants and increase in crown den-
sity are also recorded for Europe and North Ame-
rica (Theurillat and Guisan, 2001; Baker, Moseley,
2007; Kullman, 2007, 2014; Lenoir et al., 2008;
Fagre, 2009).

Dendrochronology analysis. The average inter-
serial correlation coefficient of the developed tree-
ring chronology is 0.55. The expressed population
signal level (EPS) is 0.98. Mean tree-ring width is
1.23 mm; mean sensitivity of individual series is
0.24, mean age of model trees is 82 years (minimum
50 years, maximum 155 years, standard deviation
is 27).

On the curve of tree-ring chronology, two main
periods were considered (Fig. 5).

The period from 1982 to 2001 demonstrates a
high increment followed by a negative trend. At
the same time, the average radial increment after
1980 is 25 % higher than the same for the previous
period. The previous period (1967-1981) shows a
decline of the increment with a minimum in 1973,
followed by a recovery of growth index to the level
of 1967-1969.

After 2002 there are fluctuations of radial incre-
ment with depression in the 2010s.

Tree-ring width and ecological variables. In
the mountain forest-tundra ecotone the temperature
and precipitation during both warm (months with
consistently positive mean monthly temperatures)
and cold (months with consistently negative tem-
peratures) periods of the year have a considerable
effect on radial increment (Fig. 6).
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Fig. 6. a — running 11-yr correlation coefficients between growth indices and meteorological parameters
(July—September); b — relationship between growth indices and precipitation in November—February.

Dotted line — significance level at p < 0.05.

The relationship between radial increment (in
growth indices — GI) and precipitation in Novem-
ber—February is consistently negative over the entire
period of observation (» = —0.37). In the period be-
tween 1967 and 1982 the correlation was » =—0.69,
in the period between 1982 and 2001 » =—0.81.

During the decline of radial increment between
1967 and 1982 GI correlated positively and signifi-
cantly with the temperature of May—June (» = 0.66).

The decline in radial increment with its subse-
quent increase in the late 1960s and early 1980s
corresponds with the decrease of air temperature at
the beginning of the growing season (May—June).
The multiple regression equation for this period in-
dicates positive effects of May—June temperatures
and negative effects of November—February pre-
cipitation (3).

48

For 1967-1982:

GI: 0'68 * TMG)FJMI’[E - 0'5 * PNnvember—February - 0'52
(7 =0.71), 3)
where, GI — growth index; 7 — temperature; P — pre-
cipitation.

The decrease of May and June temperatures in-
hibits radial increment at the beginning of the grow-
ing season and together with a large amount of win-
ter precipitation slows down melting process and
shortens the length of the growing season, leading
to a decrease in radial increment. Earlier (Vaganov
et al., 1999) it was shown that increased winter pre-
cipitation causes shortening of the growing season
and, consequently, decrease in the width of annual
rings. Also, for the Altai Mountains, it was shown
based on the Siberian larch Larix sibirica Ledeb.
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trees (Fonti et al., 2013) that warmer early-growing
season promotes a higher water conduction capac-
ity by increasing the number and size of early wood
tracheids.

After 1982 and up to 2001 radial increment re-
sponds positively to the precipitation in July—Sep-
tember (» = 0.54) with an increase in correlation
during the period of root zone wetness decrease
(Fig. 2, ¢). In the same period the correlation with
July—September temperature becomes negative
(r=-0.63). There is also a positive correlation with
the temperature of a cold period (the strongest is
the correlation with November—December tempera-
tures of the previous year; » = 0.52).

The period from 1982 to 2001 is characterized
by a strong increase in GI with a subsequent nega-
tive trend. The equation of multiple regressions, as
in the previous case, indicates the negative effect
of winter precipitation. However, there is a positive
correlation with the precipitation during the second
half of the growing season and a negative correla-
tion with the temperature of the same period (4).

For 1982-2001:

GI=049-036*T,

uly-September
% %
- 0'56 PNovember—Fehruary + 0'26 P

July-September
(= 0.81), (4)

where, GI — growth index; 7 — temperature; P — pre-
cipitation.

The manifestation of a significant correlation
between radial increment and precipitation in July—
September, as well as a change in the reaction of the
Siberian pine radial increment from a positive cor-
relation with May—June temperatures to a negative
one with July—September temperatures coincides in
time with a gradual increase in soil aridity.

The minimum root zone wetness occurs during
1998-1999 and coincides with the minimum of
radial increment (Fig. 2, ¢, 5). Taking into consid-
eration that the Siberian pine trees grow on thin,
well-drained soils, occurrence of soil drought can
produce a negative effect on radial increment (cor-
relation between GI and RZW 0.73) (Fig. 7). In ad-
dition, as air temperature increases the rate of evap-
otranspiration also rises. A similar phenomenon was
recorded for North America when the increase in air
temperature led to the decrease in radial increment
of Douglas fir Pseudotsuga menziesii (Mirb.) Fran-
co due to the increased atmospheric aridity (Res-
tiano et al., 2016), and in Baikal region, when the
decrease in soil and atmospheric moisture caused
the Siberian pine (Kharuk et al., 2017a) and the
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Siberian fir Abies sibirica decline (Kharuk et al.,
2017b).

The decrease in radial increment after 2007 may
have been caused by a decrease of winter or May—
June temperatures; however, a short length of the
series does not allow to estimate the influence of
climate on the chronology.

The negative effect of aridity increase on the
Siberian stone pine vital status in the Kuznetsk
Alatau Mountains was shown earlier. V. 1. Kharuk
et al. (2013) demonstrated the Siberian pine declin-
ing at elevation up to 900 meters a. s. 1., caused by
a decrease in the level of atmospheric moistening.
It was noted that the declining began in the areas
of greatest water stress risk (steep southern slopes
with thin, well-drained soils). On the territory of
Khamar-Daban Range (Kharuk et al., 2017a), the
decrease in soil (RZW) and atmospheric mois-
ture caused the Siberian pine and the Siberian fir
decline and mortality, making them more suscepti-
ble to various pathogens. High aridity, the increase
of frequency and intensity of droughts led to a sig-
nificant damage of the Siberian fir in the Eastern
Sayan Mountains (Kharuk et al., 20175). In the
Czech Republic an increase in the sensitivity of the
European spruce Picea abies L. to moisture was
noted and it was also established that the excess of
average June temperatures above 13.5 °C leads to
the change from the stimulating effect of the tem-
perature on radial increment to the inhibitory one
(Tumajer et al., 2017). An increase in the aridity of
the climate led to a massive decline and mortality
of the Siberian spruce Picea obovata Ledeb. in the
European part of the continent (Martinez-Vilalta et
al., 2012; Sazonov et al., 2013).

49



L A. Petrov, A. S. Shushpanov, A. S. Golyukov, V. I. Kharuk

Although in a high mountain environment the
increase in the aridity of climate does not affect
the vital status of the Siberian pine due to the
increase of temperature (e. g. Demidko, 2006) and
modern warming has a stimulating effect on Sibe-
rian pine advancement along the elevation gradient
(Timoshok et al., 2009, 2014, 2016; Kharuk et al.,
2017c¢), in the areas with a high risk of water stress
the radial increment responds to the decrease of soil
humidity.

CONCLUSIONS

1. The reaction of the Siberian pine to a climate
warming in the Kuznetsk Alatau Mountains indica-
ted the phase of stimulating radial increment and its
subsequent depression in 1980-2000.

2. During the phase of increasing radial incre-
ment it was correlated with the increase in air tem-
perature at the beginning of the growing season
(May—June). A further increase in temperature, re-
sulting in water stress, led to a decrease of radial in-
crement after 1983—-1984. In the depression phase,
the radial increment negatively correlated with the
air temperature and positively with the moisture pa-
rameters (root zone wetness, precipitation).

3. The increase in air temperature contributed to
the advancement of tree line and timberline (the rate
of advancement was 2-3 m/10 years and 5 m/10
years, respectively).
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Kimvarndeckne M3MEHEHUST OKA3bIBAIOT HEMIOCPEACTBCHHOE BIIMSHHE HA JICCHBIE YKOCHCTEMBI OOpeabHOM 30HHI.
Bo3spacranue TemmepaTypsl OKa3bIBa€T CTUMYIHPYIOMHH 3(h(heKT Ha IPOABIKEHUE JPEBECHON PACTUTEILHOCTH T10
TPaJIMCHTY BBICOTHI, BO3PACTaHUE PAANATBHOTO IIPUPOCTA AEPEBEEB H COMKHYTOCTH JIPEBOCTOEB. MccmenoBanm ape-
BOCTOH, cpopmupoBanHbie Pinus sibirica Du Tour (COCHOM KeJIpOBOW CHOMPCKOHN, KEIPOM CHOUPCKUM), TTpOU3pac-
TaloNIe B AKOTOHE ropHOH siecoTyHapbl Ky3nenkoro Anaray B FOxnoit Cubupu. C momonipto I'MC-TexHoM0THIA 1
HA3eMHBIX HCCIICIOBAHUI MTPOBECHA OIICHKA CKOPOCTHU TIPOABIKEHHISI TPAHHIIBI COMKHYTBIX APEBOCTOCB M BEPXHEH
TPaHMIIBI Jieca. YCTaHOBJIEHO, YTO HAYaNO MPOABIKCHUS Keapa CHOMPCKOTO IO TPATUCHTY BBICOTHI COBIAIAcT C
TIEPUOZOM BO3PACTaHUS TeMIIEpaTypsl Bo3myxa. OICHOYHAs CKOPOCTH MPOIBIKEHHS BEPXHEH T'PaHHUIIBI jeca Co-
craBisieT 2—3 M/10 net, COMKHYTHIX JipeBocToeB — 5 M/10 net. Cpenuuii paguansabiii mpupoct (PIT) mocie 1980 1. Ha
25 % npeBbllIaeT paanuanbHbIM IPUPOCT 3a aHAJTOIMYHBIN NIpeiecTBY oM nepuoa. [Ipu 3ToM nocne pe3koro nuka
PIT B Havase 1980-x IT. HAOIIOMAETCS OTPHUIATESIBLHBIN TPEH 0 JOKaIbHOro MuHUMyMa 1999 1. (72 = 0.51). IIpo-
BCJICHHBIM JCHIPOKINMATHICCKUN aHAM3 YKA3bIBaCT HA OTPHUIATEIIFHOEC BIMSHHUE TEMIICPATyphl HIONS—CCHTIOPS
(r =—-0.65) u cymMbI 3uMHIX ocaakoB (7 = —0.75), B TO BpeMsl KaK ¢ CYMMOW OCaJKOB UtoNsi—CceHTs0ps (= 0.51) n
BJIArOCOJIEpYKAaHHEM KOPHEOOUTAaeMOro ¢JIos iepruojia Beretanun koppensun (7 = 0.62) PI1 3Ha4MMO NOJI0XKHATEINb-
Hble. B npenmectByromuii nepuon (1967—1982 1T.) Takke 0TMEYECHO OTPHUIIATEIFHOE BIMSIHUE HA IPUPOCT 3UMHUX
ocankoB (r = —0.67), B To BpeMs Kak TeMIieparypa Mas—uioHs BiusieT Ha PIT monoxurensro (r = 0.66). U xo1s B
BBICOKOTOPBSIX HE HAOMIOMACTCS N3MEHEHHSI YKU3HEHHOTO COCTOSIHUS Kefipa CHOMPCKoro, st Ky3nerkoro Anaray 3a-
(ukcupoBana cMeHa TeHneHui kak PI1 kenpa cubupckoro, Tak u mumutupyronmx PIT ¢pakropos.

KualoueBble ciaoBa: copnas necomynopa, cocna kedposas cubupckas, zacyxa, FOxcnas Cubups, Pinus sibirica,
usmeHnenus kaumama, Kysneyxuii Anamay.
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